ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
W. Krauss, N. Holstein, J. Lorenz, J. Konys
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 129-133
PFC and FW Materials Technology | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14124
Articles are hosted by Taylor and Francis Online.
In fusion technology, functional scales are required for various application fields like first wall tungsten coating, anti-corrosion or tritium permeation barriers, and brazing layers in joining technology. Established processes for layer deposition exhibit several kinds of drawbacks ranging from difficulty controlling layer thickness, inhomogeneity of coatings, application limits because of geometrical reasons, or critical thermal loading. Inherently, electrochemical plating technology does not exhibit these critical features. Growing of galvanic layers depends on the transported charge and thus can easily be controlled by current flow and/or deposition time. The main part of this development work was focused on voltammetric analyses to assist the deposition of transition metals on refractory metal surfaces, e.g., tungsten and Eurofer steel, and to deliver boundary conditions for electrolytes. Typical elements that can be used in joining may range from Ti, V by Ni, Fe up to Pd, and Cu. However, a direct joining of tungsten onto Eurofer steel by copper is metallurgically impossible due to missing miscibility of copper with tungsten. Thus, interlayers with an active functionality are required, which interact with both bulk components and filler to obtain a sound braze joint brazing. For both W-W and W-Eurofer joints, demonstrators were successfully fabricated and analyzed by metallurgical and physical methods.