ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Steffen Antusch, Marcus Müller, Prachai Norajitra, Gerald Pintsuk, Volker Piotter, Hans-Joachim Ritzhaupt-Kleissl, Tobias Weingärtner
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 110-115
PFC and FW Materials Technology | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14121
Articles are hosted by Taylor and Francis Online.
Fusion technology as a possible and promising alternative energy source for the future is intensively investigated at Karlsruhe Institute of Technology (KIT). The KIT divertor design for the future DEMO fusion power plant is based on a modular concept of He-cooling finger units. More than 250,000 single parts are needed for the whole divertor system, where the most promising divertor material, tungsten, must withstand steady-state heat loads of up to 10 MW/m2.Powder injection molding (PIM) as a mass-oriented manufacturing method of parts with high near-net-shape precision has been adapted and developed at KIT for producing tungsten parts, which provides a cost-saving alternative compared to conventional machining. While manufactured tungsten parts are normally composed of only one material, two-component PIM applied in this work allows the joining of two different materials, e.g., tungsten with a tungsten alloy, without brazing.The complete technological process of two-component tungsten PIM of samples, including the subsequent heat-treatment process, is outlined. Characterization results of the finished samples, e.g., microstructure, hardness, density, and joining zone quality, are discussed.