ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
A. V. Gorshkov, S. V. Akhtyrskiy, I. S. Bel'bas, E. E. Mukhin, A. G. Razdobarin, S. Yu. Tolstyakov
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 104-109
Diagnostics | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14120
Articles are hosted by Taylor and Francis Online.
The metal mirrors for deflecting laser radiation in the divertor Thomson scattering system of ITER are found to be inapplicable due to high density of laser radiation on a mirror. This is caused by the short distance from the laser focus to the mirror surface. We report on investigations of the possibility to use dielectric mirrors and protective sapphire plates in a rotary unit. We study the laser damage thresholds of optical elements, which are supposed to be used in the laser input channel. These optical elements are the dielectric mirrors deposited on different substrates (quartz, sapphire, and single-crystal molybdenum) and the protecting sapphire plate. A number of sapphire samples were irradiated by a neutron flux up to 1019 n/cm2 (E > 100 keV) and annealed. Laser damage thresholds of the elements were measured at room temperature and at the ITER operating temperature of 150°C.A YAG:Nd laser operating with 10-Hz repetition rate was used in the experiments. The laser pulse parameters were 1064-nm wavelength, 16-ns duration, and 250 to 300 mJ of energy.The experiments have not identified any dependence of optical element damage threshold versus the number of laser pulses. No damage was observed after 105 laser pulses with energy density just 10% below the damage threshold level.The applicability of these optical elements in the divertor Thomson scattering system of ITER had been proven.