ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
A. V. Gorshkov, S. V. Akhtyrskiy, I. S. Bel'bas, E. E. Mukhin, A. G. Razdobarin, S. Yu. Tolstyakov
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 104-109
Diagnostics | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14120
Articles are hosted by Taylor and Francis Online.
The metal mirrors for deflecting laser radiation in the divertor Thomson scattering system of ITER are found to be inapplicable due to high density of laser radiation on a mirror. This is caused by the short distance from the laser focus to the mirror surface. We report on investigations of the possibility to use dielectric mirrors and protective sapphire plates in a rotary unit. We study the laser damage thresholds of optical elements, which are supposed to be used in the laser input channel. These optical elements are the dielectric mirrors deposited on different substrates (quartz, sapphire, and single-crystal molybdenum) and the protecting sapphire plate. A number of sapphire samples were irradiated by a neutron flux up to 1019 n/cm2 (E > 100 keV) and annealed. Laser damage thresholds of the elements were measured at room temperature and at the ITER operating temperature of 150°C.A YAG:Nd laser operating with 10-Hz repetition rate was used in the experiments. The laser pulse parameters were 1064-nm wavelength, 16-ns duration, and 250 to 300 mJ of energy.The experiments have not identified any dependence of optical element damage threshold versus the number of laser pulses. No damage was observed after 105 laser pulses with energy density just 10% below the damage threshold level.The applicability of these optical elements in the divertor Thomson scattering system of ITER had been proven.