ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Yasunori Iwai, Katsumi Sato, Toshihiko Yamanishi
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 83-88
Hydrogen/Tritium Behavior | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14117
Articles are hosted by Taylor and Francis Online.
In the case of a fire accident in a fusion plant, tritiated organic substances will be produced. We have developed a Pd/ZrO2 catalyst applicable for the oxidation of tritiated organic substances. In this study, two different weight ratios of palladium, 5 and 10 g/l, were selected. The overall reaction rate constant of tritiated methane oxidation with the palladium catalysts in a flow-through system were determined as a function of space velocity from 1200 to 7000 h-1 , methane concentration in carrier from 0.004 to 100 ppm, and temperature of catalyst from 323 to 673 K. As-received catalysts showed a large overall reaction rate constant over the whole tested temperature range. However, the constants gradually decreased after a while. The considerable decrease was evaluated especially over the lower temperature range. The decrease has been explained as caused by the layers of produced water that formed on the surface of the catalyst playing the role of obstacle to reactant transport onto the noble metal deposited on the catalyst. The performance of 10 g/l catalyst was superior to that of 5 g/l over the whole tested temperature range. The overall reaction rate constant was dependent on the space velocity and independent of methane concentration in the carrier.