ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Federal Power Act amendments focus on grid reliability
Fedorchak
North Dakota’s sole member of the U.S. House of Representatives, Republican freshman Congresswoman Julie Fedorchak, has introduced the Baseload Reliability Protection Act.
The bill aims to “amend the Federal Power Act to prohibit retirements of baseload electric generating units in any area that is served by a Regional Transmission Organization or an Independent System Operator and that the North American Electric Reliability Corporation [NERC] categorizes as at elevated risk or high risk of electricity supply shortfalls, and for other purposes.”
A summary of the legislation is available on Fedorchak’s House website.
Amendments: The Baseload Reliability Protection Act would amend the Federal Power Act in the following ways:
Kenzo Munakata, Yoshinori Kawamura
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 71-76
Hydrogen/Tritium Behavior | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14115
Articles are hosted by Taylor and Francis Online.
Cryogenic adsorption is effective for the recovery of low-concentration hydrogen isotopes in bulk helium gases. In a fusion power plant, application of this process is foreseen for the recovery of tritium from the blanket sweep gas and cleanup of the helium discharge exhaust gas. The authors performed a screening test to find more suitable adsorbents for the recovery of hydrogen isotopes from the bulk helium gas at liquid nitrogen temperature. The screening test indicated that a natural mordenite adsorbent has a quite high adsorption capacity for hydrogen under a helium atmosphere. For the adsorption of deuterium, it was found that the natural mordenite adsorbent possesses a high adsorption capacity even at the lower pressure range of hydrogen and deuterium. The adsorption rates of hydrogen and deuterium were quantified by analyzing breakthrough curves obtained in experiments. Evaluated effective pore diffusivities of hydrogen isotopes in the mordenite adsorbents are considerably higher than those in MS5A adsorbents. Thus, it can be said that the natural mordenite adsorbents are suitable for adsorption of hydrogen isotopes from the viewpoint of adsorption rates, as well. The results suggest that mordenite-type adsorbents are promising for the recovery of low-concentration hydrogen isotopes from the helium bulk gas.