ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Kenzo Munakata, Yoshinori Kawamura
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 71-76
Hydrogen/Tritium Behavior | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14115
Articles are hosted by Taylor and Francis Online.
Cryogenic adsorption is effective for the recovery of low-concentration hydrogen isotopes in bulk helium gases. In a fusion power plant, application of this process is foreseen for the recovery of tritium from the blanket sweep gas and cleanup of the helium discharge exhaust gas. The authors performed a screening test to find more suitable adsorbents for the recovery of hydrogen isotopes from the bulk helium gas at liquid nitrogen temperature. The screening test indicated that a natural mordenite adsorbent has a quite high adsorption capacity for hydrogen under a helium atmosphere. For the adsorption of deuterium, it was found that the natural mordenite adsorbent possesses a high adsorption capacity even at the lower pressure range of hydrogen and deuterium. The adsorption rates of hydrogen and deuterium were quantified by analyzing breakthrough curves obtained in experiments. Evaluated effective pore diffusivities of hydrogen isotopes in the mordenite adsorbents are considerably higher than those in MS5A adsorbents. Thus, it can be said that the natural mordenite adsorbents are suitable for adsorption of hydrogen isotopes from the viewpoint of adsorption rates, as well. The results suggest that mordenite-type adsorbents are promising for the recovery of low-concentration hydrogen isotopes from the helium bulk gas.