ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Y. Yamauchi, Y. Kosaka, Y. Nobuta, T. Hino, K. Nishimura
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 66-70
Hydrogen/Tritium Behavior | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14114
Articles are hosted by Taylor and Francis Online.
The removal of deuterium retained in boron, titanium, and titanium oxide films by neon glow discharge was investigated. The films were exposed to deuterium glow plasma to retain the deuterium and subsequently exposed to neon glow plasma. The temperature of the exposures was room temperature. The residual deuterium was estimated by thermal desorption spectroscopy. The removal ratio of deuterium by neon glow discharge largely depended on the material. Namely, the ratios for boron, titanium, or titanium oxide were 14%, 2%, or 40%, respectively. The ratios for the boron and the titanium oxide roughly agreed with the estimation from SRIM code calculations, while the ratio for the titanium did not agree with the estimation. These results suggest that the reduction of the deuterium retention is owing to the etching and the ion impact desorption of neon ions in the cases of boron and titanium oxide, and the prompt re-trapping of deuterium by titanium atoms might occur in the case of titanium. The comparison between titanium and titanium oxide clearly shows that the removal effect by glow discharge largely depended on the surface conditions, such as oxygen impurity.