ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
N. Bekris, M. Sirch
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 50-55
Hydrogen/Tritium Behavior | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14111
Articles are hosted by Taylor and Francis Online.
Among the various getter materials the interalloy ZrCo has been selected by the ITER team as the reference material for the storage of hydrogen isotopes at the tritium plant because of its excellent getter properties, which are comparable to those of uranium. Only certain conditions, such as the presence of high partial pressure of H2 at relatively low temperatures (350°C to 400°C), or during repeated hydrogen absorption-desorption heat cycles, have been a matter of concern, because under these conditions ZrCo can lose its gettering properties. Indeed, under repetitive loading/deloading cycling, the getter hydride (ZrCoH3) tends to disproportionate, i.e., to convert into ZrH2 and ZrCo2 and thus show a significant performance degradation of its gettering properties. Disproportionation is a major drawback as it fixes almost irreversibly part of the hydrogen (hence, tritium) into a ZrH2 form.To understand the underlying mechanism leading to the disproportionation, a detailed investigation has been undertaken. Using thermal analytical methods and based on crystallographic considerations, we came to the conclusion that the driving force for such disproportionation has to be attributed to the hydrogen occupation (taking place during the hydridation) of the various crystallographic sites available to it. During the hydridation process [approximately]4% of hydrogen goes into the less-stable 8f2 and 8e sites, where the Zr-H distance is shorter than the ZrH2 distance. Therefore, during the dehydridation process these sites are not releasing the hydrogen, but rather they are generating the very stable ZrH2, thus leading to the partial disproportionation of the material.Therefore, we may conclude that ZrCo it is not adequate for the storage of tritium and other hydrogen isotopes within the tritium plant of ITER, and consequently, we would not recommend it for such use.