ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
N. Bekris, M. Sirch
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 50-55
Hydrogen/Tritium Behavior | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14111
Articles are hosted by Taylor and Francis Online.
Among the various getter materials the interalloy ZrCo has been selected by the ITER team as the reference material for the storage of hydrogen isotopes at the tritium plant because of its excellent getter properties, which are comparable to those of uranium. Only certain conditions, such as the presence of high partial pressure of H2 at relatively low temperatures (350°C to 400°C), or during repeated hydrogen absorption-desorption heat cycles, have been a matter of concern, because under these conditions ZrCo can lose its gettering properties. Indeed, under repetitive loading/deloading cycling, the getter hydride (ZrCoH3) tends to disproportionate, i.e., to convert into ZrH2 and ZrCo2 and thus show a significant performance degradation of its gettering properties. Disproportionation is a major drawback as it fixes almost irreversibly part of the hydrogen (hence, tritium) into a ZrH2 form.To understand the underlying mechanism leading to the disproportionation, a detailed investigation has been undertaken. Using thermal analytical methods and based on crystallographic considerations, we came to the conclusion that the driving force for such disproportionation has to be attributed to the hydrogen occupation (taking place during the hydridation) of the various crystallographic sites available to it. During the hydridation process [approximately]4% of hydrogen goes into the less-stable 8f2 and 8e sites, where the Zr-H distance is shorter than the ZrH2 distance. Therefore, during the dehydridation process these sites are not releasing the hydrogen, but rather they are generating the very stable ZrH2, thus leading to the partial disproportionation of the material.Therefore, we may conclude that ZrCo it is not adequate for the storage of tritium and other hydrogen isotopes within the tritium plant of ITER, and consequently, we would not recommend it for such use.