ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Yu. Igitkhanov, B. Bazylev, I. Landman
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 34-38
PFC and FW Materials Issues | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14108
Articles are hosted by Taylor and Francis Online.
The thermal performance of the first wall (FW) monoblock module, made from carbon fiber composite (CFC) or tungsten alloy with a castellated plasma phasing surface, was analyzed for runaway electron (RE) impact under reactor conditions. A water cooling system with Cu pipes embedded into the module is used. Calculations demonstrate that, in ITER, for an expected RE pulse duration [approximately]0.1sec and deposition energy of [approximately]30MJ/m2 , the heat generation in a W monoblock occurs within a thin surface layer ([approximately]10m) which, however, does not melt. In the CFC case, heat generation occurs deep in the bulk ([approximately]1000m), but CFC does not experience brittle destruction. The intense X-ray radiation caused by runaways is strongly attenuated within a 10-mm-thick layer of W and does not pose any threat for the cooling system. For the CFC case, a small but significant heat generation caused by the RE can occur in the Cu pipe.