ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Satoru Yoshimura, Satoshi Sugimoto, Shigefumi Okada (19P60)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 376-378
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1407
Articles are hosted by Taylor and Francis Online.
A measurement system for the investigation of the translation of the field reversed configuration (FRC) plasma using computer tomography (CT) data at two different cross-sections was established. Two sets of CT devices were installed at the upstream and downstream sides of the confinement chamber of the FIX machine. Each CT device was composed of three arrays of detectors sensitive to the near-infrared radiation. The Fourier-Bessel expansion technique was employed to reconstruct the two-dimensional distributions of the light emissivity of the FRC plasma. After the completion of the translation, the intensity of emission decreased significantly, probably because the density and the temperature of the plasma were decreased due to the plasma expansion induced by the translation.