ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
T. Numakura et al. (19P47)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 343-345
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1396
Articles are hosted by Taylor and Francis Online.
The effects of the plasma-confining potentials and the associated radially sheared electric fields on the central-cell electron energy confinement are theoretically and experimentally investigated in the GAMMA 10 tandem mirror. In particular, the scaling of the central-cell electron temperatures with electron-confining potentials is studied on the basis of the local energy-balance equation. The obtained theoretical scaling of electron temperatures with electron-confining potentials is then compared with the experimentally observed relation between these two parameters.Recently, by the use of new 0.5-MW level gyrotrons in the plug region, four-time progress in the formation of the ion-confining potential c including a new record of 3 kV has been achieved in a hot-ion mode having bulk-ion temperature Ti = several keV. In the hot-ion mode, intermittent vortex-like turbulent structures are observed in the case without the gyrotron injections; in this case, radially produced weak shear of electric fields dEr/dr and appreciable transverse losses are observed. However, during the application of electron-cyclotron heatings, the associated potential rise produces a stronger shear in the central cell (dEr/dr = several 10 kV/m2) resulting in the disappearance of such intermittent turbulent vortices with plasma confinement improvement.In order to investigate the effect of the radially sheared electric fields on the electron energy confinement, the radial profiles of the thermal diffusivity are derived from the local power-balance analysis by the use of the data from the following various diagnostics in the above-described hot-ion mode. The obtained radial profiles of radial electric field and thermal diffusivity imply that the reduction of the thermal diffusivity is associated with the radially produced strong shear of electric fields.