ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
P. A. Bagryansky, A. D. Beklemishev, E. I. Soldatkina (19P46)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 340-342
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1395
Articles are hosted by Taylor and Francis Online.
One of the most important subjects of the GDT research program is MHD-stability and transversal transport of high pressure two-component plasma. Positive influence of radial electric field on the plasma confinement was demonstrated in previous experiments on the GDT in regimes without any special MHD stabilizers. In recent experiments it was observed that stable plasma confinement always corresponds to intermittent distribution of biasing potential on limiters and plasma dumps. It was shown that enhancement of plasma confinement time corresponds to the radial electric field in the range of 15-40 V/cm and one induces the sheared plasma rotation. Regime with grounding of all radial electrodes was typically unstable with plasma confinement time two times lower than gas dynamic flow time. Therefore sheared rotation can stabilize MHD modes of high two-component plasma in the GDT experiment. It is also shown that contact between plasma and radial electrodes is essential but can not completely provide MHD stability in GDT.Measurements using special combined probe were carried out to study fluctuation induced transversal transport and allowed to conclude that cross field transport is negligible and does not play essential role in regimes with sheared plasma rotation.