ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Joint NEA project performs high-burnup test
An article in the OECD Nuclear Energy Agency’s July news bulletin noted that a first test has been completed for the High Burnup Experiments in Reactivity Initiated Accident (HERA) project. The project aim is to understand the performance of light water reactor fuel at high burnup under reactivity-initiated accidents (RIA).
M. Katano et al. (19P27)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 289-291
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1378
Articles are hosted by Taylor and Francis Online.
To measure the behavior of high energy ions, a semiconductor detector (named: ccHED) is installed at the central cell mid-plane of GAMMA 10. When ccHED is located at the radius of R=25cm from the center of plasma, the burst like signal is observed. To investigate this burst like signal, FFT method is applied to the signal of ccHED and signal of electrostatic probes (ESPs) which is used to measure fluctuations. As a result, it is clearly observed that the frequency component of the burst like signal has the same peak as one of the frequency components of the fluctuations. The amplitude of the signal has the pitch angle dependence. These observations suggest the existence of the radial transport of high energy ions due to the drift-type fluctuations.