ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
H. Kakiuchi et al. (19P24)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 280-282
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1375
Articles are hosted by Taylor and Francis Online.
An inner mirror throat of the plug/barrier cell is one of the noticeable locations in the tandem mirror GAMMA10, because the location is the most suitable for a measurement of the ions bounced by the plug potential, which are essential for the tandem mirror confinement. A lithium beam probe was designed as a main part of the diagnostic system to measure the radial profiles of the electron and neutral particle density at the inner mirror throat. A neutral lithium beam is injected into the plasma and the light emitted from the beam is detected. We estimated the upper limit of the plasma density measurable by the lithium beam probe and discussed validity of the reconstruction for various types of radial profiles. We adopted, at first, a Gaussian type of radial profile of the density with the radius of 2.5 cm for the estimation of the upper limit of the density. It was found that the profile reconstruction was carried out well up to the peak density of 5 × 1013 cm-3, and also well even in the non-axisymmetric radial profile. This method is quite appropriate for the measurement of the density profile at the inner mirror throat.