ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Gen Chen, Yanping Zhao, Yuzhou Mao, Shuai Yuan, Gaowei Zheng, Fen Zheng, Zhongxin He, Shenglin Yu
Fusion Science and Technology | Volume 61 | Number 4 | May 2012 | Pages 301-308
Technical Paper | doi.org/10.13182/FST61-301
Articles are hosted by Taylor and Francis Online.
Ion cyclotron range of frequency (ICRF) heating has been used in tokamaks as one of the most successful auxiliary heating tools and has been adopted in EAST. To ensure the steady operation of the ICRF heating system in EAST, the research and development of the fast ferrite tuner (FFT), which aimed to achieve real-time impedance matching of transmitter to antenna, has been carried out. The design and analysis of the FFT is an iterative process where multiple parameters have to be taken into account. The dimensions of the FFT should be chosen as a compromise between relative equivalent electrical length and high-power performance by using the finite element method and numerous computer simulations. The first prototype aimed at achieving a response time of milliseconds and operation with a peak power of 300 kW, which will inform us about the radio-frequency and the high-power performance of such a ferrite tuner. The bench test results have demonstrated that the FFT with a tuning speed of [approximately]200 ms is faster than the traditional methods, and it can be one of the candidates for the real-time impedance matching of the ICRF heating system in EAST. The high-power performance of the FFT should be tested in the EAST 2012 spring campaign. To be fit for the real-time impedance matching for ICRF heating experiments, development of a new prototype, which aims at a response time of 0.5 ms, an insertion loss of <1%, and operation with a peak power of 1.5 MW, is in progress.