ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
Gen Chen, Yanping Zhao, Yuzhou Mao, Shuai Yuan, Gaowei Zheng, Fen Zheng, Zhongxin He, Shenglin Yu
Fusion Science and Technology | Volume 61 | Number 4 | May 2012 | Pages 301-308
Technical Paper | doi.org/10.13182/FST61-301
Articles are hosted by Taylor and Francis Online.
Ion cyclotron range of frequency (ICRF) heating has been used in tokamaks as one of the most successful auxiliary heating tools and has been adopted in EAST. To ensure the steady operation of the ICRF heating system in EAST, the research and development of the fast ferrite tuner (FFT), which aimed to achieve real-time impedance matching of transmitter to antenna, has been carried out. The design and analysis of the FFT is an iterative process where multiple parameters have to be taken into account. The dimensions of the FFT should be chosen as a compromise between relative equivalent electrical length and high-power performance by using the finite element method and numerous computer simulations. The first prototype aimed at achieving a response time of milliseconds and operation with a peak power of 300 kW, which will inform us about the radio-frequency and the high-power performance of such a ferrite tuner. The bench test results have demonstrated that the FFT with a tuning speed of [approximately]200 ms is faster than the traditional methods, and it can be one of the candidates for the real-time impedance matching of the ICRF heating system in EAST. The high-power performance of the FFT should be tested in the EAST 2012 spring campaign. To be fit for the real-time impedance matching for ICRF heating experiments, development of a new prototype, which aims at a response time of 0.5 ms, an insertion loss of <1%, and operation with a peak power of 1.5 MW, is in progress.