ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
J. Ongena, A. M. Messiaen
Fusion Science and Technology | Volume 61 | Number 2 | February 2012 | Pages 413-420
Status of Fusion | Proceedings of the Tenth Carolus Magnus Summer School on Plasma and Fusion Energy Physics | doi.org/10.13182/FST12-A13528
Articles are hosted by Taylor and Francis Online.
The total amount of heating power coupled to the plasma Ptot and the energy confinement time are determining parameters for realizing the plasma conditions suitable for the reactor. We recall that the ignition condition can be expressed by the following condition on the triple fusion product:nT = Ptot2/3Vol = 3n2T2Vol/Ptot > (nT)ignition (1)where = E/Ptot is the energy confinement time, E = 3nT Vol for an isothermal plasma with Ti = Te = T and a plasma volume Vol; n is the plasma density. The value T = 15 keV corresponds to the minimum value of (nT)ignition as a function T (see Fig. 1). In the present discussion for the sake of simplicity, we neglect density and temperature profile factors. The heating power in most of the present experiments is given by Ptot = POH + Padd where POH is the ohmic power and Padd is the additional heating due to neutral beam injection or radiofrequency heating. At ignition, the additional heating power must come completely from the energetic α-particles produced by the fusion reactions and we must have Ptot = P if we neglect the residual POH and the plasma losses by Bremsstrahlung (PBr [is proportional to] n2[square root]T).