ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Tai T. Pham, Mohamed S. El-Genk
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 343-348
Modeling and Simulations | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13443
Articles are hosted by Taylor and Francis Online.
This paper investigates the interaction of energetic solar protons measured by the Geostationary Operational Environmental Satellites (GOES), with the aluminum shielding structure of different thicknesses and calculates the dose distribution inside an tissue equivalent phantom inside the aluminum structure. In addition to the incident energetic protons, the major contributors to the total dose inside the phantom are the secondary protons and neutrons generated by spallation reactions in the aluminum structure and the phantom. Three modes of incidence of source protons are considered: center seeking, planar, and isotropic. The center seeking mode is the most conservative, resulting in the highest dose values and distribution inside the phantom, compared to those at the phantom's outer surface. Both the planar and isotropic modes result in much lower dose values that are more evenly distributed throughout the phantom.