ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
F. Cardoso, C. Pereira, M. A. F. Veloso, C. A. M. Silva, R. Cunha, A. L. Costa
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 338-342
Modeling and Simulations | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13442
Articles are hosted by Taylor and Francis Online.
Among the projects of IV generation reactors available nowadays, the (High Temperature Reactors) HTR, are highlighted due to their desirable characteristics and they have been studied by the Instituto Nacional de Ciências e Tecnologia de Reatores Inovadores/CNPq(Brazil). For this work, it evaluated the neutronic behavior and fuel composition during the burnup using the codes (Winfrith Improved Multi-Group Scheme) WIMSD5 and the MCNPX2.6, inserting different percentages of reprocessed fuel in the core. The fuel type “C” coming from Angra-I nuclear power plant, in Brazil, enriched with 3.1% was burnt by three typical cycles and then reprocessed. It recovered (Pu) and minor actinides (MA)being neptunium (Np), americium (Am), curium (Cm), and processed six different fuels varying percentage insertion of reprocessed fuel and enrichment uranium. It analyzed the multiplication factor, temperatures reactivity coefficients, and the composition during the burnup. The results showed, in the analyzed conditions, only one of these fuels is possible to be used. To compare, a reference fuel using 15% enrichment (235U) was too evaluated.