ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
X.-N. Chen, D. Zhang, W. Maschek
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 275-280
Modeling and Simulations | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13432
Articles are hosted by Taylor and Francis Online.
This paper is a theoretical study of a radial standing wave, which can be applied in the so-called traveling wave reactor (TWR). Two-dimensional cylindrical core geometry is considered and the fuel is assumed to drift radially, which corresponds to a radial fuel shuffling scheme in practice. A one-group diffusion equation coupled with burn-up equations is set up, where the burn-up solution is obtained numerically. The uranium-plutonium (U-Pu) conversion cycle with pure 238U as fresh fuel is considered under conditions of a typical sodium cooled fast reactor with metallic uranium fuel loaded. The asymptotic problem is solved by a time-stepping iteration scheme and the radial standing wave solution is obtained together with certain eigenvalue keff.The neutron flux, the neutron fluence and the net neutron generation cross section are presented and discussed for the inward fuel drifting motion.