ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
R. W. Moir
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 243-249
Fusion-Fission Hybrids and Transmutation | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13427
Articles are hosted by Taylor and Francis Online.
Fusion reactors can be designed to breed fissile material for startup and makeup fuel for fission reactors while suppressing fissioning, thereby enhancing safety. Each fusion reaction can release about 2.1 times the 14 MeV neutron's energy in the blanket in this fission-suppressed design while producing 0.6 fissile atoms, which is 2660 kg/1000 MW of fusion power for a full power year. The revenues would be doubled from such a plant by selling both fuel at a price of $60/g and electricity at $0.05/kWh for Q=Pfusion/Pinput=4. Fusion reactors could also be designed to destroy fission wastes by fissioning, but this is not a natural use of fusion whereas it is a designed use of fission reactors. Fusion could supply makeup fuel to fission reactors dedicated to fissioning wastes with some of their neutrons. The design for safety and heat removal is already accomplished with fission reactors; however, fusion reactors have geometry that compromises safety with a complex and thin wall separating the fusion zone from the fission blanket zone. Fusion is unique compared to fission in that its high-energy 14 MeV neutron can generate up to 0.05 232Uatoms for each 233U atom produced from thorium, about twice the IAEA standards of “reduced protection” or “self protection.”