ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
R. W. Moir
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 243-249
Fusion-Fission Hybrids and Transmutation | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13427
Articles are hosted by Taylor and Francis Online.
Fusion reactors can be designed to breed fissile material for startup and makeup fuel for fission reactors while suppressing fissioning, thereby enhancing safety. Each fusion reaction can release about 2.1 times the 14 MeV neutron's energy in the blanket in this fission-suppressed design while producing 0.6 fissile atoms, which is 2660 kg/1000 MW of fusion power for a full power year. The revenues would be doubled from such a plant by selling both fuel at a price of $60/g and electricity at $0.05/kWh for Q=Pfusion/Pinput=4. Fusion reactors could also be designed to destroy fission wastes by fissioning, but this is not a natural use of fusion whereas it is a designed use of fission reactors. Fusion could supply makeup fuel to fission reactors dedicated to fissioning wastes with some of their neutrons. The design for safety and heat removal is already accomplished with fission reactors; however, fusion reactors have geometry that compromises safety with a complex and thin wall separating the fusion zone from the fission blanket zone. Fusion is unique compared to fission in that its high-energy 14 MeV neutron can generate up to 0.05 232Uatoms for each 233U atom produced from thorium, about twice the IAEA standards of “reduced protection” or “self protection.”