ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
The D&D of SM-1A
With the recent mobilization at the site of the former SM-1A nuclear power plant at Fort Greely, Alaska, the Radiological Health Physics Regional Center of Expertise, located at the U.S. Army Corps of Engineers’ Baltimore District, began its work toward the decommissioning and dismantlement of its third nuclear power plant, this time located just 175 miles south of the Arctic Circle.
M. M. Günther, J. Schütrumpf, A. Britz, K. Vogt, K. Sonnabend, M. Roth
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 231-236
Fusion-Fission Hybrids and Transmutation | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13425
Articles are hosted by Taylor and Francis Online.
We present a novel nuclear activation-based method for the investigation of high-energy photons and electron dynamics within the laser-plasma interaction zone. This method is based on high density activation targets which are a pseudoalloy of several selected isotopes with different photo-neutron disintegration reaction thresholds. The gamma decay spectrum emitted by the activated target is used for the reconstruction of the bremsstrahlung spectrum generated by the electrons. This allows for the reconstruction of the spectrum of bremsstrahlung photons without any anticipated fit procedures. Furthermore, the characterization of the electrons in the interaction zone is accessible immediately.The consolidated findings about the interaction mechanisms could be used to realize, control and characterize laser driven particle generation, such as a pulsed neutron source for nuclear and material sciences using special target designs and materials in a pseudoalloic compound of isotopes. An additional application is the laser assisted nuclear transmutation to produce short-lived isotopes with activities suitable for medical diagnostics and therapy.