ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
Sümer Sahin, Haci Mehmet sahin, Adem Acir
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 216-221
Fusion-Fission Hybrids and Transmutation | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13422
Articles are hosted by Taylor and Francis Online.
The accumulated reactor grade (RG)-plutonium as nuclear waste of conventional reactors is estimated to exceed 1700 tonnes. Laser Inertial Confinement Fusion Fission Energy (LIFE) engine is considered to incinerate RG-plutonium in stockpiles. Calculations have been conducted for a constant fusion driver power of 500 MWth in S8-P3 approximation using 238-neutron groups. RG-plutonium out of the nuclear waste of LWRs is used in form of fissile carbide fuel in TRISO particles with volume fractions of 2, 3, 4, 5 and 6 %, homogenously dispersed in the Flibe coolant. Respective tritium breeding ratio (TBR) values per incident fusion neutron are calculated as TBR = 1.35, 1.52, 1.73, 2.02 and 2.47 at start-up. With the burn up of fissionable RG-Pu isotopes in the coolant, TBR decreases gradually. Similarly, blanket energy multiplications are calculated as M0 = 3.8, 5.5, 7.7, 10.8 and 15.4 at start-up, respectively. Calculations have indicated prospects of achievability of very high burn up values (> 400 000 MD.D/MT).