ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
M. Nematollahi, M. Mazhari
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 186-192
Fission | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13418
Articles are hosted by Taylor and Francis Online.
In this paper an attempt has been made to quantitatively determine the heat transfer contribution of the different mechanisms during the bubble collapse process in subcooled flow boiling condition.For achieving this objective, the bubble behavior was studied during the subcooled flow boiling on a vertical heating rod with upward coolant water using the results of high-speed photography obtained by Nematollahi in 1999 at Tohoku University. Subsequently, some parameters including superheated layer thickness and active nucleation sites density as well as bubble parameter such as maximum diameter, life time, generation period and so forth were measured for calculation purpose of this study.In the present investigation, four procedures of superheated layer mixing, turbulence induced by bubble collapse phenomenon, latent heat transport and transferring the energy by stable micro bubbles (SMB) (remained after original bubble collapse) were considered as the bubble mechanisms during the collapse process in subcooled flow boiling. Consequently, the heat transfer contributions of the bubble mechanisms were calculated using the applied models in the literature as well as the results obtained from the bubble behavior analysis for different experimental conditions of inlet subcooled temperature, linear power density (W/cm), flow velocity as well as two heights of a heated rod.According to the calculated results, the most effective mechanism of heat transfer during the bubble collapse process was nominated to be superheated layer mixing at the moment of bubble departure with contribution ranging from 2.62% to 34.11% and average value of 9.8% to total heat flux. Also it was concluded that an average value of about 18% from total heat flux is transferred during the condensation of bubble, as it starts to shrink and finally collapses in the subcooled liquid at the end of its life in the subcooled flow boiling.