ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
Shoji Kotake, Hidemasa Yamano, Yutaka Sagayama
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 137-143
Fission | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13410
Articles are hosted by Taylor and Francis Online.
The present paper describes safety goals and principles for Generation IV energy systems, with emphasis on prevention and mitigation against severe accidents in the safety design corresponding to Level 4 of the defense-in-depth architecture. Consistent with them, a deterministic safety design approach has been applied to the Japan sodium-cooled fast reactor (JSFR) with the complementary use of a probabilistic approach. The JSFR safety design principle has also been developed with safety design features corresponding to essential safety functions, such as reactor shutdown, decay heat removal and containment. This concept especially highlights passive safety features and mitigation measures against core disruptive accidents. Design principle against the chemical activity of sodium is also discussed both on isolation from the reactor core safety and the contribution to the plant reliability.