ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
M. P. Gryaznevich et al.
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 89-94
Fusion | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13402
Articles are hosted by Taylor and Francis Online.
The new approach in advancing the use of fusion, “Fusion for Neutrons” (F4N), is proposed. The application of a small or medium size Spherical Tokamak (ST) as a powerful steady-state fusion neutron source (FNS) is discussed. An overview of various conceptual designs of such neutron sources is given and they are compared with a recently proposed Super Compact Fusion Neutron Source (SCFNS). It is shown that SCFNS with major radius as low as 0.5 is feasible and could produce several MW of neutrons in a steady-state regime.