ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
H. Hojo, Y. Tatematsu, T. Saito (20R06)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 164-167
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1340
Articles are hosted by Taylor and Francis Online.
A new numerical scheme for electromagnetic wave tracing is presented in place of the standard ray-tracing method in studies of electron cyclotron resonance heating. The new method solves the full-wave Maxwell equations, and can take into account wave diffraction, mode conversion (or, cross-polarization scattering), and wave tunneling across an evanescent region between resonance and cutoff layers, in addition to estimating power absorption due to wave-particle resonances. The simulations of electromagnetic wave tunneling are demonstrated. The power absorption rate in electron cyclotron resonance heating is also compared with that by the ray-tracing method.