ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
H. Hojo, Y. Tatematsu, T. Saito (20R06)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 164-167
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1340
Articles are hosted by Taylor and Francis Online.
A new numerical scheme for electromagnetic wave tracing is presented in place of the standard ray-tracing method in studies of electron cyclotron resonance heating. The new method solves the full-wave Maxwell equations, and can take into account wave diffraction, mode conversion (or, cross-polarization scattering), and wave tunneling across an evanescent region between resonance and cutoff layers, in addition to estimating power absorption due to wave-particle resonances. The simulations of electromagnetic wave tunneling are demonstrated. The power absorption rate in electron cyclotron resonance heating is also compared with that by the ray-tracing method.