ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
Klaus Hesch et al.
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 64-69
Fusion | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13398
Articles are hosted by Taylor and Francis Online.
Complementing the efforts towards the realization of ITER, KIT is pursuing, within the overall EURATOM fusion program, a number of important long-term technology developments towards a magnetic confinement fusion power plant (FPP), taking into account the features that will distinguish such facility from ITER.To this end, structural materials on the basis of both low-activation steels and refractory metals, as well as concepts for breeding blankets and divertor designs, are being developed along with suitable manufacturing and joining technologies. In parallel, KIT contributes to the engineering design and validation phase of the International Fusion Materials Irradiation Facility (IFMIF) necessary for qualifying the materials to be used in an FPP. The specific characteristics of an FPP fuel cycle, i.e., substantial tritium quantities within huge mass flows of gases and the related tritium compatible high throughput vacuum and pumping technologies, are being translated into viable engineering approaches. High temperature superconducting magnet solutions are being developed, with a view to overall plant efficiency. In order to increase the wall-plug efficiency of plasma heating, advanced gyrotron tubes with power levels significantly beyond what is envisaged for ITER are being developed along with a frequency tunability option for efficiently counteracting plasma instabilities.