ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
Jean-Luc Biarrotte
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 15-20
Plenary | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13390
Articles are hosted by Taylor and Francis Online.
New generation high power hadron accelerators are more and more required to produce intense fluxes of secondary particles for various fields of science: radioactive ions for nuclear physics, muons and neutrinos for particle physics, and of course neutrons for many applications like condensed matter physics, solid-state physics, or irradiation tools. This paper will focus on the applications of such accelerators in support of nuclear energy, and in particular on the two following cases: the International Fusion Materials Irradiation Facility (IFMIF), which asks for a 10 MW, 40 MeV deuteron beam, and the ADS (Accelerator Driven System) application for transmutation of long-lived radioactive wastes, which typically requires a 600 MeV - 1 GeV proton beam of a few mA for demonstrators, and a few tens of mA for large industrial systems. In this respect, the status of the accelerator proposed for the European MYRRHA project will be detailed and discussed.