ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Junghee Kim, P. Andrew, R. Reichle
Fusion Science and Technology | Volume 61 | Number 2 | February 2012 | Pages 185-196
Technical Paper by Monaco ITER Postdoctoral Fellows | First Joint ITER-IAEA Technical Meeting on Analysis of ITER Materials and Technologies | doi.org/10.13182/FST12-A13386
Articles are hosted by Taylor and Francis Online.
Plasma-wall interaction in fusion devices is unavoidable and leads to material erosion, dust formation, and tritium retention. Erosion of plasma-facing material and generation of dust inside ITER can significantly affect the operation. This is because the total in-vessel dust and tritium inventories during an operational campaign are required to be below limits of 1000 and 1 kg, respectively, imposed by safety considerations. To ensure respect of these limits, dust and tritium inventories should be monitored during the operational campaign of ITER. The level of erosion will be monitored by laser ranging techniques. To manage the dust inventory, local dust monitors from a number of locations will measure local dust concentration and accumulation. An additional important issue is dust lying on hot surfaces. In terms of safety, "hot dust" inventory is also strictly limited. Several techniques have been proposed to monitor the hot dust amount. Finally, the in-vessel tritium inventory must be limited and monitored. Assessment of the deficit in the tritium fuel supply is a way of measuring in-vessel tritium retention; however, this will have to be complemented by local surface analysis. Several diagnostic methods are introduced and compared with each other in order to find the most promising ITER-relevant concepts.