ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
P. Y. Li, C. J. Pan, B. L. Hou, S. L. Han, Z. C. Sun, F. Savary, Y. K. Fu, R. Gallix, N. Mitchell
Fusion Science and Technology | Volume 61 | Number 2 | February 2012 | Pages 141-146
Technical Paper | First Joint ITER-IAEA Technical Meeting on Analysis of ITER Materials and Technologies | doi.org/10.13182/FST12-A13380
Articles are hosted by Taylor and Francis Online.
The research and development of manufacture-related technology for ITER magnet supports is one of the tasks for construction. AISI 316LN austenitic stainless steel has been developed and tested as the main raw material. The material shows excellent mechanical properties at room temperature, 77 K, and 4.2 K. An alternative design for the toroidal field support manufacture without welding was carried out. The structural analysis shows no stress concentration and buckling in the present design during ITER operation. However, further engineering tests of the structural stability under various load combinations are also scheduled. A brazed connection to attach the cooling pipes to the support plates is suggested. Several kinds of candidate brazing fillers, such as Sn-Pb-, Ag-, and Cu-based alloys have been developed. The tensile strength of the brazed solders is up to 400 MPa at 77 K for the Ag-based and Cu-based fillers. For correction coil support, the plasma spray insulation coating was developed and introduced.