ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Eliseo Visca, A. Pizzuto, B. Riccardi, S. Roccella, G. P. Sanguinetti
Fusion Science and Technology | Volume 61 | Number 2 | February 2012 | Pages 118-123
Technical Paper | First Joint ITER-IAEA Technical Meeting on Analysis of ITER Materials and Technologies | doi.org/10.13182/FST12-A13376
Articles are hosted by Taylor and Francis Online.
ENEA and Ansaldo Nucleare S.p.A. (EA) have been deeply involved in the European International Thermonuclear Experimental Reactor (ITER) research and development activities for the manufacturing of high-heat-flux plasma-facing components and in particular for the inner vertical target (IVT) of the ITER divertor.These components have to be manufactured by using both armor and structural materials whose properties are defined by ITER. Their physical properties prevent the use of standard joining techniques. The reference armor materials are tungsten and carbon/carbon fiber composite (CFC), and for the cooling pipe, the materials are a copper alloy (CuCrZr).During the last years EA have jointly manufactured several actively cooled mock-ups and prototypical components of different lengths, geometries, and materials by using innovative processes: hot radial pressing (HRP) and prebrazed casting (PBC).The HRP technique is based on radial diffusion bonding between the cooling tube and the armor material obtained by pressurizing only the cooling tube while the joining zone is kept in vacuum and at the required bonding temperature. The heating is obtained by a standard air furnace.The PBC process is used for the CFC armor tile preparation. A soft copper interlayer between the tube and armor is necessary to mitigate the stress at the joint interface, and it is obtained by pure copper casting that follows the activation of the CFC surface by a standard brazing alloy.The optimization of the processes started from the successful manufacturing of both tungsten and CFC small-scale mock-ups and successful testing under the worst ITER operating condition (20 MW/m2) through the achievement of record performances obtained from a medium-scale vertical target CFC and tungsten armored mock-up: After ITER-relevant heat flux fatigue testing (20 MW/m2 for 2000 cycles, CFC part, and 15 MW/m2 for 2000 cycles, tungsten part), it reached a critical heat flux of 35 MW/m2 at ITER-relevant thermal-hydraulic conditions.Based on these results EA participated in the European program for the qualification and manufacturing of the divertor IVT, according to the Fusion for Energy (F4E) specifications. A divertor IVT prototype (400-mm total length) with three plasma-facing-component units was successfully tested at ITER-relevant thermal heat fluxes (20 MW/m2 for 3000 cycles, CFC part, and 15 MW/m2 for 3000 cycles, tungsten part).Now, EA are ready to face the challenge of the ITER IVT production, transferring to an industrial production line the experience gained in the development, optimization, and qualification of the PBC and HRP processes.