ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
A. C. England, D. K. Lee, S. G. Lee, M. Kwon, S. W. Yoon, Hanbit Team (19R03)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 118-121
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1329
Articles are hosted by Taylor and Francis Online.
The Hanbit magnetic mirror has a central cell, one anchor cell and one plug cell plus associated vacuum chambers. The Hanbit device has been involved in a series of experiments on stabilization of the MHD flute type mode. Earlier work showed that it was possible to stabilize the m = -1 flute type MHD instability with RF power near the cyclotron resonance by the sideband coupling process. Divertors were used previously in experiments on the TARA mirror device and the HIEI mirror device. According to Pastukhov the main stabilizing effect is compressibility. The present configuration uses just one divertor coil in one end of Hanbit and produces a left-right asymmetry in the magnetic field. One of the central cell coils with reversed current is used as the divertor coil and two adjacent coils with increased current are used to compensate for the field droop and to prevent the field lines from intercepting the bare ion cyclotron resonant heating (ICRH) antenna. The divertor strongly reduces the m=-1 instability when the null point (x-point) is sufficiently inside the vacuum tank. However, the diverted plasma is directed into a wall and the divertor cannot be used to eliminate impurities.