ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. C. England, D. K. Lee, S. G. Lee, M. Kwon, S. W. Yoon, Hanbit Team (19R03)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 118-121
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1329
Articles are hosted by Taylor and Francis Online.
The Hanbit magnetic mirror has a central cell, one anchor cell and one plug cell plus associated vacuum chambers. The Hanbit device has been involved in a series of experiments on stabilization of the MHD flute type mode. Earlier work showed that it was possible to stabilize the m = -1 flute type MHD instability with RF power near the cyclotron resonance by the sideband coupling process. Divertors were used previously in experiments on the TARA mirror device and the HIEI mirror device. According to Pastukhov the main stabilizing effect is compressibility. The present configuration uses just one divertor coil in one end of Hanbit and produces a left-right asymmetry in the magnetic field. One of the central cell coils with reversed current is used as the divertor coil and two adjacent coils with increased current are used to compensate for the field droop and to prevent the field lines from intercepting the bare ion cyclotron resonant heating (ICRH) antenna. The divertor strongly reduces the m=-1 instability when the null point (x-point) is sufficiently inside the vacuum tank. However, the diverted plasma is directed into a wall and the divertor cannot be used to eliminate impurities.