ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Thea Energy releases preconceptual plans for Helios fusion power plant
Fusion technology company Thea Energy announced this week that it has completed the preconceptual design of its fusion power plant, called Helios. According to the company, Helios is “the first stellarator fusion power plant architecture that is realistic to build and operate with hardware that is available today, and that is tolerant to the rigors of manufacturing, construction, long-term operation, and maintenance of a commercial device.”
Y. Nakashima et al. (18R09)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 82-85
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1320
Articles are hosted by Taylor and Francis Online.
Behavior of edge plasma and neutral particles are described based on visible measurement by using high-speed camera performed in the GAMMA 10 tandem mirror for the first time. In the central-cell midplane of GAMMA 10, two high-speed cameras (Ultima-SE, Photron Inc. and MEMRECAM fx-K4, NAC Inc.) were mounted and detailed time behavior of visible light emission from the plasma was investigated. In the standard plasma discharges heated by ion cyclotron range of frequency (ICRF) wave, a short gas puffing of hydrogen (3 ms) close to the central-cell midplane was carried out to illuminate the plasma periphery and the time evolution of visible light emission from the gas cloud was captured precisely. The time behavior of the emission cloud localized near the gas puff port was found to be similar to that of H line intensity measured nearby. The light emission on the central-cell limiter accompanied by central electron cyclotron heating (c-ECH) showed a rotation in the direction of the electron diamagnetic drift. the light emission also indicates another rotation mechanism, such as ExB drift at a plasma collapse. Fully three-dimensional neutral transport simulation using a Monte-Carlo code DEGAS is applied to gas puff imaging experiment and the simulation results qualitatively explained the experimental result.