ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NRC’s hybrid AI workshop coming up
The Nuclear Regulatory Commission will host a hybrid public workshop on September 24 from 9 a.m.-5 p.m. Eastern time to discuss its activities for the safe and secure use of artificial intelligence in NRC-regulated activities.
K.-S. Chung et al. (18R05)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 69-71
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1316
Articles are hosted by Taylor and Francis Online.
Radial profiles of plasma density and electron temperature have been measured by a fast-scanning probe (FSP) system with various neutral pressures in the MAP-II and DiPS linear devices for the divertor simulation. The probe system is made of three probe tips, two of which is for a Mach probe consisting of two opposite-directional probes, and one is for an emissive probe installed on the pneumatically driven fast-scanning system with stroke of 30 cm. In MAP-II, density at the center has been varied from 1.5 × 1013 cm-3 to 0.7 × 1013 cm-3 with pressures of 5.5 to 112 mtorr, while that of DiPS varied from 3.5 × 1012 cm-3 to 9 × 1012 cm-3 with pressures of 0.8 to 50 mtorr. Relation of density profile with the working pressure/magnetic field is analyzed by using a simple fluid model. Electron temperature at the center is also measured by the Thomson scattering method and compared with those of FSP, which is varied from 0.6 to 6.5 eV