ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
P. K. Mioduszewski, L. W. Owen, D. A. Spong, M. E. Fenstermacher, A. E. Koniges, T. D. Rognlien, M. V. Umansky, A. Grossman, H. W. Kugel
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 238-260
Technical Paper | doi.org/10.13182/FST07-A1302
Articles are hosted by Taylor and Francis Online.
Plasma boundary control in stellarators has been shown to be very effective in improving plasma performance and, accordingly, is an important element from the very beginning of the National Compact Stellarator Experiment (NCSX) design. Studies of the magnetic field topology outside the last closed magnetic surface (LCMS) indicate the possibility of many toroidal revolutions of field lines launched within a couple of centimeters of the LCMS. Field line connection lengths, typically in the order of 100 m, should be sufficient to allow for the necessary separation of divertor and separatrix temperatures. In the top and bottom of the bean-shaped cross section (toroidal angle = 0), a field expansion of >5 is observed, which will help to spread out the heat flux on limiters and divertor plates. Plasma-facing components (PFCs) will be developed systematically according to our respective understanding of the NCSX boundary; the phased PFC development will start out with a set of limiters and has the eventual goal to develop a divertor with all the benefits of impurity and neutrals control. Neutrals calculations have been started to investigate the effect of neutrals penetration at various plasma cross sections, especially at the location of = 0 deg. Advanced wall conditioning techniques, as employed in other major fusion devices, will be incorporated in the NCSX operation.