ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Tieshan Wang, Zhiguo Wang, Jingen Chen, Genming Jin, Yubo Piao
Fusion Science and Technology | Volume 37 | Number 2 | March 2000 | Pages 146-150
Technical Paper | doi.org/10.13182/FST00-A130
Articles are hosted by Taylor and Francis Online.
Charged-particle products with ~3.9-MeV energy were observed in a low-energy experiment (Ep 330 keV) with a proton bombarding a Ti2Hx target. The features of the charged-particle products were the same as those of an alpha particle. The threshold of the reaction was ~150 keV. The maximum reaction rate reached more than 105 r/s, while the proton energy and current were 324 keV and 1.2 mA, respectively. The excitation curve of this unknown reaction increased exponentially with the growth of proton energy. There is no known nuclear reaction induced by a proton that can be applied to interpret this experimental phenomenon. Some interpretations, e.g., an indirect secondary reaction and a multibody reaction model, are discussed, but the origin of this unknown nuclear reaction is still a mystery and under study.