ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion roundup: Helion sets temperature record; Inertia raises $450M
Two start-ups working to commercialize fusion energy made headlines last week. Helion Energy announced that its Polaris prototype fusion energy machine recently demonstrated measurable deuterium-tritium fusion and achieved a plasma temperature of 150 million degrees Celsius (MÂșC). Newcomer Inertia Enterprises announced that it has raised $450 million in its Series A fundraising round.
D. R. Mikkelsen, H. Maassberg, M. C. Zarnstorff, C. D. Beidler, W. A. Houlberg, W. Kernbichler, H. Mynick, D. A. Spong, P. Strand, V. Tribaldos
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 166-180
Technical Paper | doi.org/10.13182/FST07-A1297
Articles are hosted by Taylor and Francis Online.
We explore whether the energy confinement and planned heating in the National Compact Stellarator Experiment (NCSX) are sufficient to test magnetohydrodynamic (MHD) stability limits, and whether the configuration is sufficiently quasi-axisymmetric to reduce the neoclassical ripple transport to low levels, thereby allowing tokamak-like transport. A zero-dimensional model with fixed profile shapes is related to global energy confinement scalings for stellarators and tokamaks, neoclassical transport properties are assessed with the DKES, NEO, and NCLASS codes, and a power balance code is used to predict temperature profiles. Reaching the NCSX goal of <> = 4% at low collisionality will require HISS-95 = 3, which is higher than the best achieved in present stellarators. However, this level of confinement is actually ~10% lower than that predicted by the ITER-97P tokamak L-mode scaling. By operating near the stellarator density limit, the required HISS-95 is reduced by 35%. The high degree of quasi-axisymmetry of the configuration and the self-consistent "ambipolar" electric field reduce the neoclassical ripple transport to a small fraction of the neoclassical axisymmetric transport. A combination of neoclassical and anomalous transport models produces pressure profile shapes that are within the range of those used to study the MHD stability of NCSX. We find that <> = 4% plasmas are "neoclassically accessible" and are compatible with large levels of anomalous transport in the plasma periphery.