ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
H. Yamada, Y. Suzuki, K. Ida, M. Yoshinuma, T. Kobuchi, K. Y. Watanabe, K. Tanaka, T. Tokuzawa, LHD Experimental Group
Fusion Science and Technology | Volume 51 | Number 1 | January 2007 | Pages 138-143
Technical Paper | Stellarators | dx.doi.org/10.13182/FST07-A1295
Articles are hosted by Taylor and Francis Online.
Finite-beta equilibria with a double magnetic axis have been realized in the Large Helical Device (LHD). Since the rotational transform is weak in the central region of the LHD, the effect of an externally applied quadrupole field is more pronounced in the central region than in the periphery. Consequently, the magnetic axis splits due to a moderate elongation. In the case of vertical elongation, the figure-eight structure of the magnetic surfaces has been observed in a soft X-ray image. Degradation of confinement due to the appearance of the separatrix is suggested in the case of horizontal elongation, which is closely related to the equilibrium beta limit. The three-dimensional magnetohydrodynamic equilibrium code HINT, which does not assume the existence of nested flux surfaces, provides physical pictures consistent with the experimental observations.