ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Heimo Bürbaumer, Gerald Kamelander
Fusion Science and Technology | Volume 37 | Number 2 | March 2000 | Pages 131-145
Technical Paper | doi.org/10.13182/FST00-A129
Articles are hosted by Taylor and Francis Online.
The temporal evolution of the operating point of a fusion plasma during the ignition access, during ignited and subignited operation phases, is analyzed for plasmas like that of the International Thermonuclear Experimental Reactor (ITER) on the basis of a one-half-dimensional set of equations including feedback equations for auxiliary heating and fuel supply. It is shown that simple proportional feedback controls do not work taking into account the delay times in the control process. Proportional-integral-differential (PID) and improved types of control are examined for the purpose of controlling a fusion plasma against sudden parameter changes. On this basis a study on the simultaneous use of D-T fuel injection and auxiliary heating control methods for an ITER-like plasma is carried out, resulting in an algorithm capable of finding the optimal operation point in the ignited regime or a high-Q operating point in a subignited case taking into account density and beta limits and stabilizing the reactor performance against changes in confinement.