ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Shinji Ebara, Takehiko Yokomine, Akihiko Shimizu
Fusion Science and Technology | Volume 50 | Number 4 | November 2006 | Pages 538-545
Technical Paper | doi.org/10.13182/FST06-A1277
Articles are hosted by Taylor and Francis Online.
So as to make the most of an available irradiation test volume of the gas-cooled high-flux test module of the International Fusion Materials Irradiation Facility, the vessel of the test module is supposed to have a rectangular shape, into which specimens can be packed spatially efficiently. There is a large pressure difference of several atmospheric pressures between the inside and the outside of the vessel because gaseous helium flows inside the vessel to control the temperature of the specimens and a low-vacuum condition is kept outside the vessel for safety reasons. This pressure difference is assumed to cause readily the deformation of the vessel wall. Even a slight deformation should be taken seriously because the deformation of the vessel noticeably affects the coolant flow, that is, cooling performance. In this study, we performed elastoplastic finite element analysis for two rectangular vessels of the high-flux test module proposed by FZK and Kyushu University. In addition to the material nonlinearity, by taking into account the geometrical nonlinearity and thermal stress, we could obtain detailed results such as relations between the deformations and the pressure differences.