ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Shinji Ebara, Takehiko Yokomine, Akihiko Shimizu
Fusion Science and Technology | Volume 50 | Number 4 | November 2006 | Pages 538-545
Technical Paper | doi.org/10.13182/FST06-A1277
Articles are hosted by Taylor and Francis Online.
So as to make the most of an available irradiation test volume of the gas-cooled high-flux test module of the International Fusion Materials Irradiation Facility, the vessel of the test module is supposed to have a rectangular shape, into which specimens can be packed spatially efficiently. There is a large pressure difference of several atmospheric pressures between the inside and the outside of the vessel because gaseous helium flows inside the vessel to control the temperature of the specimens and a low-vacuum condition is kept outside the vessel for safety reasons. This pressure difference is assumed to cause readily the deformation of the vessel wall. Even a slight deformation should be taken seriously because the deformation of the vessel noticeably affects the coolant flow, that is, cooling performance. In this study, we performed elastoplastic finite element analysis for two rectangular vessels of the high-flux test module proposed by FZK and Kyushu University. In addition to the material nonlinearity, by taking into account the geometrical nonlinearity and thermal stress, we could obtain detailed results such as relations between the deformations and the pressure differences.