ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
R. Pampin
Fusion Science and Technology | Volume 50 | Number 4 | November 2006 | Pages 528-537
Technical Paper | doi.org/10.13182/FST06-A1276
Articles are hosted by Taylor and Francis Online.
Lithium-lead is a candidate tritium-generating material in conceptual designs of magnetic fusion power plants. Its prolonged utilization, ultimately during the entire lifetime of such a facility, has the potential to minimize amounts of active waste and improve the economic performance. Limits to a prolonged use are production of long-lived radioactive waste and depletion of lithium and reduction of the tritium production rate to levels where self-sufficiency is compromised. The methodology and calculations performed to estimate the transmutation of LiPb following its prolonged irradiation in two of the models in the European Power Plant Conceptual Study are presented. It is shown that no waste requiring permanent disposal is expected regardless of the irradiation length. Time-dependent tritium generation is discussed: Lithium replenishment seems unavoidable, but depletion rates are found to be lower than assumed in the design. The effect of the LiPb flow pattern in the irradiation history proves to be crucial in order to support these results.