ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
P. W. Humrickhouse, P. Calderoni, B. J. Merrill
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1564-1567
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12732
Articles are hosted by Taylor and Francis Online.
A number of additions have been made to the computational fluid dynamics (CFD) code Fluent in order to model hydrogen permeation. In addition to fluid dynamics, Fluent solves for heat transfer in coupled solid and fluid regions, and solves advection-diffusion equations for scalar quantities such as hydrogen concentration. The latter have been modified with additional code to satisfy Sievert's Law at solid-fluid interfaces and allow for temperature dependent diffusivity and permeability.The method has been employed to model the Tritium Heat Exchanger (THX) experiment at INL, which investigates hydrogen permeation in helium and candidate structural materials for high temperature gas reactor heat exchangers. The Arrhenius law parameters used in Fluent for Inconel 617 are initially determined via a simplified analytical method, and the resulting model predictions compare favorably with experiment data.