ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE opens pilot program to authorize test reactors outside national labs
Details of the plan to test new reactor concepts under the Department of Energy’s authority but outside national laboratory boundaries—first outlined in one of the four executive orders on nuclear energy released on May 23—were just released in a request for applications issued by the DOE.
M. Yoshida et al.
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1560-1563
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12731
Articles are hosted by Taylor and Francis Online.
T retention and its depth profile in the graphite tiles used for first wall of JT-60U have been measured by a tritium imaging plate technique and a full combustion method. T was found only limited depth beneath the plasma facing surface and little in both the surface region shallow than 1 m and in bulk more than 1mm in depth. Although most of T produced by DD reactions are thermalized and neutralized in plasma and impinge on the plasma facing surface and penetrate into the inner surface, they are isotopically replaced by subsequently incoming D. Only some of high energy T escaping from plasma are directly implanted beneath the surface and retained escaping from the isotopic replacement until attainment of a saturation concentration.