ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
M. Yoshida et al.
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1560-1563
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12731
Articles are hosted by Taylor and Francis Online.
T retention and its depth profile in the graphite tiles used for first wall of JT-60U have been measured by a tritium imaging plate technique and a full combustion method. T was found only limited depth beneath the plasma facing surface and little in both the surface region shallow than 1 m and in bulk more than 1mm in depth. Although most of T produced by DD reactions are thermalized and neutralized in plasma and impinge on the plasma facing surface and penetrate into the inner surface, they are isotopically replaced by subsequently incoming D. Only some of high energy T escaping from plasma are directly implanted beneath the surface and retained escaping from the isotopic replacement until attainment of a saturation concentration.