ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
H. Takenaga, H. Kubo, Y. Kamada, Y. Miura, Y. Kishimoto, T. Ozeki
Fusion Science and Technology | Volume 50 | Number 4 | November 2006 | Pages 503-507
Technical Paper | doi.org/10.13182/FST06-A1273
Articles are hosted by Taylor and Francis Online.
Accumulation of impurity injected for reduction of heat load to the divertor plates was of great concern with a peaked density profile. Applicability of impurity injection to a burning plasma with a peaked density profile was investigated for various impurity accumulation levels using the A-SSTR2 design parameters. Impurity transport analysis indicated that the argon density profile twice as peaked as the electron density profile can yield acceptable radiation profile even with a peaked density profile. The required confinement improvement factor over the IPB98(y,2) scaling slightly increased from 1.4 with the flat density profile to 1.5 with the peaked electron density profile at ne(r/a = 0)/ne(r/a = 0.7) ~ 3. When the argon density profile was determined by neoclassical transport, the radiation loss in the core plasma intensively increased with the peaked density profile, which requires higher confinement enhancement factor of 1.9 at ne(r/a = 0)/ne(r/a = 0.7) ~ 3.