ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE opens pilot program to authorize test reactors outside national labs
Details of the plan to test new reactor concepts under the Department of Energy’s authority but outside national laboratory boundaries—first outlined in one of the four executive orders on nuclear energy released on May 23—were just released in a request for applications issued by the DOE.
K. Munakata, K. Hara, T. Wajima, K. Wada, K. Katekari, M. Tanaka, T. Uda
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1440-1443
Detritiation and Isotope Separation | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12702
Articles are hosted by Taylor and Francis Online.
Large amounts of tritium would be handled in D-T fusion power plants. Tritium is the radioisotope of protium, and is easily taken into the human body. With regard to nuclear fusion reactor facilities, the concept of multi-confinement system is applied to prevent tritium leaking to the environment. The last barrier to confine tritium is a building itself containing all equipment and facilities. If a severe accident takes place, tritium gas could leak into the facilities. In order to prevent tritium leaking to the environment, a secure air cleanup system (ACS) needs to be installed in the building. In ACS, the tritium gas, which leaks to rooms by an accident, is oxidized by catalysts, and then tritiated water vapor is collected by adsorbents. This method can remove tritium effectively, whereas which has a problem related to large ventilation force required to overcome high pressure drop in catalyst and adsorbent beds. Ventilation force could be substantially reduced by applying honeycomb catalysts and adsorbents to ACS. We investigated applicability of honeycomb catalysts and adsorbents to ACS, performing a screening test for the performance of honeycomb catalysts and adsorbents.