ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Shoji Takashima, Kenji Kotoh, Shotaro Moriyama, Takafumi Tsuge
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1436-1439
Detritiation and Isotope Separation | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12701
Articles are hosted by Taylor and Francis Online.
We have been studying the dynamic behavior of hydrogen isotopes flowing between viscous and molecular regions in an adsorbent packed-bed column, for the purpose of developing a pressure swing adsorption (PSA) process system for hydrogen isotope separation. This PSA system consists of adsorption, evacuating desorption and hydrogen replenishing processes. The kinetics in the adsorption process has been becoming to be predictable in theoretical simulation based on experimental results, but it is difficult as yet to simulate the dynamic behaviors in evaluating and replenishing processes because of the complicated geometry of passages in a packed-bed and the change of gas flow patterns between viscous and molecular regions depending on not only the pressure but also the dimension of passages. In the dynamics, the important factor should be known is the mass flow conductance in pellet packed-bed. In this work, we carried out the experiment for examining the dependence of the conductance on the diameter of particles packed in a column, since the geometrical and dimensional conditions of passages are affected by the size of packing pellets. From the experimental result and its analysis, we clarified the pressure and particle-size dependences of the conductance of hydrogen isotopes in spherical pellet packed-beds.