ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE opens pilot program to authorize test reactors outside national labs
Details of the plan to test new reactor concepts under the Department of Energy’s authority but outside national laboratory boundaries—first outlined in one of the four executive orders on nuclear energy released on May 23—were just released in a request for applications issued by the DOE.
K. Hara, K. Munakata, T. Wajima, K. Wada, T. Takeishi, M. Tanaka, T. Uda
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1339-1342
Detritiation and Isotope Separation | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12677
Articles are hosted by Taylor and Francis Online.
Recovery of tritium released into working areas in nuclear fusion plants is a key issue for safety. A large volume of air in the last confinement of fusion power plants should be processed by air cleanup system (ACS). In ACS, tritium gas is oxidized by catalysts, and then tritiated water vapor is collected by adsorbents. This method can remove tritium effectively, whereas high throughput of air causes higher pressure loss in catalyst and adsorbent beds. The pressure loss can be reduced by replacing the packed bed of catalysts with the honeycomb catalysts. In this study, the oxidation experiments of hydrogen in humid gases over honeycomb-type catalysts were performed, and the influence of water vapor on the rate of catalytic oxidation was investigated. The result of the experiments suggests that the rate of catalytic oxidation decreases with increasing water vapor content and its influence varies depends on the temperature. It is also indicated the rate of oxidation substantially decreases at the lower temperatures even in the case where water vapor contents is considerably lower. Therefore, it is necessary to consider the decrease in the catalytic activity by coexistent water vapor.