ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
K. Hara, K. Munakata, T. Wajima, K. Wada, T. Takeishi, M. Tanaka, T. Uda
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1339-1342
Detritiation and Isotope Separation | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12677
Articles are hosted by Taylor and Francis Online.
Recovery of tritium released into working areas in nuclear fusion plants is a key issue for safety. A large volume of air in the last confinement of fusion power plants should be processed by air cleanup system (ACS). In ACS, tritium gas is oxidized by catalysts, and then tritiated water vapor is collected by adsorbents. This method can remove tritium effectively, whereas high throughput of air causes higher pressure loss in catalyst and adsorbent beds. The pressure loss can be reduced by replacing the packed bed of catalysts with the honeycomb catalysts. In this study, the oxidation experiments of hydrogen in humid gases over honeycomb-type catalysts were performed, and the influence of water vapor on the rate of catalytic oxidation was investigated. The result of the experiments suggests that the rate of catalytic oxidation decreases with increasing water vapor content and its influence varies depends on the temperature. It is also indicated the rate of oxidation substantially decreases at the lower temperatures even in the case where water vapor contents is considerably lower. Therefore, it is necessary to consider the decrease in the catalytic activity by coexistent water vapor.