ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
M. Yu. Isaev, S. Brunner, W. A. Cooper, T. M. Tran, A. Bergmann, C. D. Beidler, J. Geiger, H. Maassberg, J. Nührenberg, M. Schmidt
Fusion Science and Technology | Volume 50 | Number 3 | October 2006 | Pages 440-446
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1267
Articles are hosted by Taylor and Francis Online.
A new three-dimensional code, VENUS+f, for neoclassical transport calculations in nonaxisymmetric toroidal systems is presented. Numerical drift orbits from the original VENUS code and the f method developed for tokamak transport calculations are combined. The first results obtained with VENUS+f are compared with neoclassical theory for different collisional regimes in a JT-60 tokamak test case both for monoenergetic particles and for a Maxwellian distribution; good agreement is found. Successful benchmarking of the bootstrap current in the Wendelstein 7-X configuration with the DKES code for different collisionality regimes as well as further VENUS+f developments are described.