ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Shinji Ueda, Hideki Kakiuchi, Hidenao Hasegawa, Shun'ichi Hisamatsu
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1296-1299
Environmental and Organically Bound Tritium | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12668
Articles are hosted by Taylor and Francis Online.
In order to simulate the behavior of radionuclides in a brackish lake, Lake Obuchi, adjacent to the first commercial spent nuclear fuel reprocessing plant in Japan, we constructed a transfer model for radionuclides using a three-dimensional hydrodynamic model coupled with an ecosystem model. To validate the hydrodynamic model using actual field data, the concentration of tritium (3H) was measured in water samples collected in and around the lake from 2005 to 2008. The samples collected from 2006 to 2008 occasionally showed higher concentrations than background when high concentration seawater flowed into the lake with the tide. 3H concentrations in the lake water estimated by the model were generally within 10% of the observations, although the observed values were overpredicted by a factor of 2 in a few cases.