ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE opens pilot program to authorize test reactors outside national labs
Details of the plan to test new reactor concepts under the Department of Energy’s authority but outside national laboratory boundaries—first outlined in one of the four executive orders on nuclear energy released on May 23—were just released in a request for applications issued by the DOE.
Y. Torikai et al.
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1057-1060
Contamination and Waste | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12598
Articles are hosted by Taylor and Francis Online.
A batch process concept for the decontamination from tritium of fusion reactor materials based on a hydrothermal treatment is under development at HRC. Essentially, tritium-loaded material is heated in a tightly closed vessel containing a defined amount of water. The objective of the water is to “capture” the released tritium in a small volume of liquid. For the detritiation, stainless steel temperatures in the range 393-473 K over a period of several days were found to be adequate. From the results it appears that by and large the released tritium accumulates in the purposely introduced water. The achieved degree of decontamination was estimated from the tritium concentration in the water and the tritium that remained in the decontaminated material. Tritium trapped in the surface layer of stainless steel was not reduced by the isochoric hydrothermal treatment in the same proportion as that in the bulk.